Exercise 48

Solve the problem of the electrified unit disk in the (x, t)-plane with center at the origin. The electric potential $u(r, z)$ is axisymmetric and satisfies the boundary-value problem

$$
\begin{aligned}
u_{r r}+\frac{1}{r} u_{r}+u_{z z} & =0, \quad 0<r<\infty, 0<z<\infty, \\
u(r, 0) & =u_{0}, \quad 0 \leq r \leq a, \\
\frac{\partial u}{\partial z} & =0, \quad \text { on } z=0 \text { for } a<r<\infty, \\
u(r, z) & \rightarrow 0 \quad \text { as } z \rightarrow \infty \text { for all } r,
\end{aligned}
$$

where u_{0} is constant. Show that the solution is

$$
u(r, z)=\frac{2 u_{0}}{\pi} \int_{0}^{\infty} J_{0}(k r) \frac{\sin a k}{k} e^{-k z} d k .
$$

Solution

Since $0<r<\infty$, the Hankel transform can be applied to solve it. The zero-order Hankel transform is defined as

$$
\mathcal{H}_{0}\{u(r, z)\}=\tilde{u}(k, z)=\int_{0}^{\infty} r J_{0}(k r) u(r, z) d r,
$$

where $J_{0}(k r)$ is the Bessel function of order 0 . Hence, the radial part of the laplacian in cylindrical coordinates transforms as follows.

$$
\mathcal{H}_{0}\left\{\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}\right\}=-k^{2} \tilde{u}(k, z)
$$

The partial derivative with respect to z transforms like so.

$$
\mathcal{H}_{0}\left\{\frac{\partial^{n} u}{\partial z^{n}}\right\}=\frac{d^{n} \tilde{u}}{d z^{n}}
$$

Take the zero-order Hankel transform of both sides of the PDE.

$$
\mathcal{H}_{0}\left\{u_{r r}+\frac{1}{r} u_{r}+u_{z z}\right\}=\mathcal{H}_{0}\{0\}
$$

The Hankel transform is a linear operator.

$$
\mathcal{H}_{0}\left\{u_{r r}+\frac{1}{r} u_{r}\right\}+\mathcal{H}_{0}\left\{u_{z z}\right\}=0
$$

Use the relations above to transform the partial derivatives.

$$
-k^{2} \tilde{u}(k, z)+\frac{d^{2} \tilde{u}}{d z^{2}}=0
$$

Move the term with \tilde{u} to the other side.

$$
\frac{d^{2} \tilde{u}}{d z^{2}}=k^{2} \tilde{u}
$$

The PDE has thus been reduced to an ODE whose solution can be expressed in terms of exponentials.

$$
\tilde{u}(k, z)=A(k) e^{k z}+B(k) e^{-k z}
$$

In order for \tilde{u} to remain bounded as $z \rightarrow \infty$, we require $A(k)=0$.

$$
\tilde{u}(k, z)=B(k) e^{-k z}
$$

Change back to $u(r, z)$ now by taking the inverse Hankel transform of $\tilde{u}(k, z)$.

$$
u(r, z)=\mathcal{H}_{0}^{-1}\{\tilde{u}(k, z)\}
$$

It is defined as

$$
\mathcal{H}_{0}^{-1}\{\tilde{u}(k, z)\}=\int_{0}^{\infty} k J_{0}(k r) \tilde{u}(k, z) d k,
$$

so we have

$$
u(r, z)=\int_{0}^{\infty} k J_{0}(k r) B(k) e^{-k z} d k
$$

Use the provided boundary conditions at $z=0$ to determine $B(k)$.

$$
\begin{aligned}
\text { For } 0<r \leq a: & u(r, 0)=u_{0}
\end{aligned} \quad \rightarrow \quad \int_{0}^{\infty} k J_{0}(k r) B(k) d k=u_{0}, ~\left(\quad \frac{\partial u}{\partial z}(r, 0)=0 \quad \rightarrow \quad \int_{0}^{\infty} k J_{0}(k r) B(k)(-k) d k=0\right.
$$

The solution to these dual integral equations is

$$
B(k)=\frac{2 u_{0}}{\pi} \frac{\sin k a}{k^{2}} .
$$

Plugging this in to the formula for $u(r, z)$, we get

$$
u(r, z)=\int_{0}^{\infty} k J_{0}(k r) \frac{2 u_{0}}{\pi} \frac{\sin k a}{k^{2}} e^{-k z} d k .
$$

Therefore,

$$
u(r, z)=\frac{2 u_{0}}{\pi} \int_{0}^{\infty} J_{0}(k r) \frac{\sin k a}{k} e^{-k z} d k .
$$

